Automatically Improving Empirical Performance: Algorithm Configuration & Selection

Frank Hutter, Lars Kotthoff, Yuri Malitsky, Barry O’Sullivan, Lin Xu

15 July 2013
Design of Heuristic Algorithms

Problem instances \[\rightarrow\] Empirical performance

Domain expert(s) \[\rightarrow\] Solution strategies

Example: tree search SAT solvers
- Decision 1: heuristic to select next branching variable
- Decision 2: heuristic to select which value to try first
- Decision 3: preprocessing
- Decision 4: restart schedule
- Decision 5: clause learning strategy
- Decision 6: clause sharing strategy in parallel SAT solving
- …

SAT: 26 parameters, \(10^{18}\) configurations (Spear)
TSP: 24 parameters, \(10^{15}\) configs (LK-H)
MIP: 76 parameters, \(10^{47}\) configs (CPLEX)
AI planning: 62 parameters, \(10^{17}\) configs (LPG)
Supervised machine learning (classification):

768 params, \(10^{47}\) configs (WEKA)

Manual tuning
Hard to understand
Computer-Aided Algorithm Design and Analysis

Automated Procedures to model & optimize empirical performance

Algorithm configuration
Find best for

Algorithm portfolios
Select best for new

Performance prediction
Quantify importance of algorithm components & instance characteristics

Saves time

Improves Performance

Improves Understanding
The Algorithm Configuration Process

Parameter domains & starting values

Configurator

Calls with different parameter settings

Configuration scenario

Target algorithm

Solves

Problem instances

Returns solution cost
The Algorithm Configuration Problem

Definition

– Given:
 • Runnable algorithm \mathcal{A} with configuration space $\Theta = \Theta_1 \times \cdots \times \Theta_n$
 • Distribution D over problem instances Π
 • Performance metric $m : \Theta \times \Pi \to \mathbb{R}$

– Find:

$$\theta^* \in \arg \min_{\theta \in \Theta} \mathbb{E}_{\pi \sim D}[m(\theta, \pi)]$$

Motivation

Customize versatile algorithms for different application domains

– Fully automated improvements
– Optimize speed, accuracy, memory, energy consumption, ...

Very large space of configurations
Algorithm parameters

Parameter types

- Continuous, integer, ordinal
- **Categorical**: finite domain, unordered, e.g. \{A,B,C\}

Parameter space has **structure**

- E.g. parameter C of heuristic A is only active if A is used
- In this case, we say C is **conditional parameter** with parent A

Parameters give rise to a **structured space of algorithms**

- Many “**configurations**” (e.g. \(10^{47}\))
- Configurations often yield qualitatively different behaviour
- → **Algorithm configuration** (as opposed to “parameter tuning”)

A Concrete Example

New SAT solver for formal verification (Spear)
 – 26 user-specifiable parameters
 – 7 categorical, 3 Boolean, 12 continuous, 4 integer

Objective: minimize runtime on software verification instance set

Issues:
 – Many possible settings \((8.34 \times 10^{17} \text{ after discretization})\)
 – Evaluating performance of a configuration is expensive
 – Instances vary in hardness
 • Some take milliseconds, other days (for the default)
 • Thus, improvement on a few instances might not mean much
Configurators have two key components

• Component 1: which configuration to evaluate next?

• Component 2: how to evaluate that configuration?
Automated Algorithm Configuration: Outline

Methods (components of algorithm configuration)
- Systems (that instantiate these components)
- Demo & Practical Issues
- Case Studies
Component 1: Which configuration to evaluate?

• For this part, let’s restrict the problem: **Blackbox function optimization**

• Optimize a function f over a domain Θ:

\[
\min_{\theta \in \Theta} f(\theta)
\]

 – Only mode of interaction: query $f(\theta)$ at arbitrary $\theta \in \Theta$

 \[
 \theta \rightarrow f(\theta)
 \]

 – Θ is still a structured space
 • Mixed continuous/discrete
 • Conditional parameters
The Simplest Search Strategy: Random Search

• Select configurations uniformly at random
 – Global search, won’t get stuck in a local region
 – But completely uninformed
Start with some configuration

repeat

 Modify a single parameter

 if performance on a benchmark set degrades then
 undo modification

until no more improvement possible
 (or “good enough")
Stochastic Local Search

• **Balance intensification and diversification**
 – Intensification: gradient descent
 – Diversification: restarts, random steps, perturbations, ...

• Prominent general methods
 – Taboo search
 – Simulated annealing
 – Iterated local search
Population-based Methods

• Population of configurations
 – Global + local search via population
 – Maintain population fitness & diversity

• Examples
 – Genetic algorithms
 – Evolutionary strategies
 – Ant colony optimization
 – Particle swarm optimization
Sequential Model-Based Optimization

New data point
Sequential Model-Based Optimization

- Popular approach in statistics to minimize expensive blackbox functions [Mockus, '78]

- Recent progress in the machine learning literature: **global convergence rates** for continuous optimization
 - [Srinivas et al, ICML'10]
 - [Bull, JMLR'11]
 - [Bubeck et al, JMLR'11]
 - [de Freitas, Smola, Zoghi, ICML'12]
Summary 1: Which configuration to evaluate?

• Need to balance diversification and intensification
• The extremes
 – Random search
 – Hillclimbing
• Stochastic local search (SLS)
• Population-based methods
• Sequential Model-Based Optimization
Component 2: How to evaluate a configuration?

Back to general algorithm configuration

– Given:
 • Runnable algorithm \mathcal{A} with configuration space $\Theta = \Theta_1 \times \cdots \times \Theta_n$
 • Distribution D over problem instances Π
 • Performance metric $m : \Theta \times \Pi \rightarrow \mathbb{R}$

– Find:

$$\theta^* \in \arg\min_{\theta \in \Theta} \mathbb{E}_{\pi \sim D}[m(\theta, \pi)]$$

Recall the Spear example

– Instances vary in hardness
 • Some take milliseconds, other days (for the default)
 • Thus, improvement on a few instances might not mean much
Simplest Solution: Use Fixed N Instances

• Effectively treat the problem as a blackbox function optimization problem

• **Issue: how large to choose N?**
 – Too small: overtuning
 – Too large: every function evaluation is slow

• **General principle**
 – Don’t waste time on bad configurations
 – Evaluate good configurations more thoroughly
Racing Algorithms

• Compare two or more algorithms against each other
 – Perform one run for each configuration at a time
 – **Discard configurations when dominated**

![Image source: Maron & Moore, Hoeffding Races, NIPS 1994]
Saving Time: Aggressive Racing

• Race new configurations against the best known
 – Discard poor new configurations quickly
 – *No requirement for statistical domination*

• Search component should allow to return to configurations discarded because they were “unlucky”
Saving More Time: Adaptive Capping

(only when minimizing algorithm runtime)

Can terminate runs for poor configurations θ' early:

– Is θ' better than θ?

• Example:

```
<table>
<thead>
<tr>
<th>RT($\theta$)=20</th>
<th>RT($\theta'$)&gt;20</th>
</tr>
</thead>
</table>
```

• Can terminate evaluation of θ' once guaranteed to be worse than θ
Summary 2: How to evaluate a configuration?

- Simplest: fixed set of N instances
- General principle
 - Don’t waste time on bad configurations
 - Evaluate good configurations more thoroughly
- Instantiations of principle
 - Racing
 - Aggressive racing
 - Adaptive capping
Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)
• Systems (that instantiate these components)
• Demo & Practical Issues
• Case Studies
Iterated Local Search in parameter configuration space:

→ Performs biased random walk over local optima
Instantiations of ParamILS Framework

How to evaluate each configuration?

– BasicILS(N): use a fixed number of N runs

– FocusedILS:
 • aggressive racing, focus on good configurations

Theorem

As FocusedILS's overall time budget $\rightarrow \infty$, it converges to the optimal configuration
Standard adaptive capping

- Is θ' better than θ?

 - Example:

 - Can terminate evaluation of θ' once guaranteed to be worse than θ

 - $RT(\theta) = 20$ and $RT(\theta') > 20$

Theorem

Early termination of poor configurations does not change ParamILS's trajectory

- Often yields substantial speedups
Gender-based Genetic Algorithm (GGA) [Ansotegui et al, ’09]

• Genetic algorithm
 – Genome = parameter configuration
 – Combine genomes of 2 parents to form an offspring

• Two genders in the population
 – Selection pressure only on one gender
 – Preserves diversity of the population
• Use N instances to evaluate configurations
 – Increase N in each generation
 – **Linear increase from** N_{start} **to** N_{end}
 • User specifies #generations ahead of time

• **Can exploit parallel resources**
 – Evaluate population members in parallel
 – Adaptive capping: can stop when the first k succeed
F-Race and Iterated F-Race

[Birattari et al, ’02 and ‘10]

• F-Race
 – Standard racing framework
 – F-test to establish that some configuration is dominated
 – Followed by pairwise t tests if F-test succeeds

• Iterated F-Race
 – Maintain a probability distribution over which configurations are good
 – Sample k configurations from that distribution & race them
 – Update distributions with the results of the race
F-Race and Iterated F-Race

[Birattari et al, ’02 and ’10]

• **Can use parallel resources**
 – Simply do the \(k \) runs of each iteration in parallel
 – But does not support adaptive capping

• **Expected performance**
 – Strong when the key challenge are reliable comparisons between configurations
 – Less good when the search component is the challenge
SMAC: Sequential Model-Based Algorithm Configuration

- Sequential Model-Based Optimization & aggressive racing

repeat
 - construct a model to predict performance
 - use that model to select promising configurations
 - compare each selected configuration against the best known
until time budget exhausted
SMAC: models

• Model algorithm performance based on random forests

• Each run we did for θ only uses a single instance π
 – Fit a model $m : \Theta \times \Pi \rightarrow \mathbb{R}$

• Aggregate over instances by marginalization

\[f(\theta) := \mathbb{E}_{\pi \sim D} [m(\theta, \pi)] \]
 – Intuition: predict for each instance and take the average
 – More efficient implementation in random forests

[Hutter et al, ’11]
Distributed SMAC

• **Distribute target algorithm runs across workers**
 – Maintain queue of promising configurations
 – Compare these to θ^* on distributed worker cores

• **Wallclock speedups**
 – Almost perfect speedups with up to 16 parallel workers
 – Up to 50-fold speedups with 64 workers
 • Reductions in wall clock time: 5h → 6 min - 15min
 2 days → 40min - 2h

[Hutter et al, ’12]
Summary: Algorithm Configuration Systems

- ParamILS
- Gender-based Genetic Algorithm (GGA)
- Iterated F-Race
- Sequential Model-based Algorithm Configuration (SMAC)
- Distributed SMAC

- Which one is best?
 - First configurator competition to come in 2014
Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)
• Systems (that instantiate these components)

Demo & Practical Issues

• Case Studies
The Algorithm Configuration Process

Parameter domains & starting values

Configurator

Calls with different parameter settings

Configuration scenario

Solves

Problem instances

Target algorithm

Returns solution cost

What the user has to provide

Parameter space declaration file

preproc \{none, simple, expensive\} [simple]
apha [1,5] [2]
beta [0.1,1] [0.5]

Wrapper for command line call

./wrapper –inst X –timeout 30
-preproc none -alpha 3 -beta 0.7
→ e.g. “successful after 3.4 seconds”
Example: Running SMAC

wget http://www.cs.ubc.ca/labs/beta/Projects/SMAC/smac-v2.04.01-master-447.tar.gz

tar xzvf smac-v2.04.01-master-447.tar.gz

cd smac-v2.04.01-master-447

./smac --seed 0 --scenarioFile example_spear/scenario-Spear-QCP-sat-small-train-small-test-mixed.txt

Scenario file holds:
- Location of parameter file, wrapper & instances
- Objective function (here: minimize avg. runtime)
- Configuration budget (here: 30s)
- Maximal captime per target run (here: 5s)
Output of a SMAC run

[...]

[INFO] *****Runtime Statistics*****
 Iteration: 12
 Incumbent ID: 11 (0x27CA0)
 Number of Runs for Incumbent: 26
 Number of Instances for Incumbent: 5
 Number of Configurations Run: 25
 Performance of the Incumbent: 0.05399999999999999
 Total Number of runs performed: 101
 Configuration time budget used: 30.020000000000034 s
[INFO] **

[INFO] Total Objective of Final Incumbent 13 (0x30977) on training set:
 0.05399999999999999; on test set: 0.055

[INFO] Sample Call for Final Incumbent 13 (0x30977)
cd /global/home/hutter/ac/smac-v2.04.01-master-447/example_spear; ruby spear_wrapper.rb example_data/QCP-instances/qcplin2006.10422.cnf 0 5.0 2147483647 2897346 -sp-clause-activity-inc '1.3162094350513607' -sp-clause-decay '1.739666995554204' -sp-clause-del-heur '1' -sp-first-restart '846' -sp-learned-clause-sort-heur '10' -sp-learned-clauses-inc '1.395279056466624' -sp-learned-size-factor '0.6071142792450034' -sp-orig-clause-sort-heur '7' -sp-phase-dec-heur '5' -sp-rand-phase-dec-freq '0.005' -sp-rand-phase-scaling '0.8863796134762909' -sp-rand-var-dec-freq '0.01' -sp-rand-var-dec-scaling '0.6433957166060014' -sp-resolution '0' -sp-restart-inc '1.7639087832223321' -sp-update-dec-queue '1' -sp-use-pure-literal-rule '0' -sp-var-activity-inc '0.7825881046949665' -sp-var-dec-heur '3' -sp-variable-decay '1.0374907487192533'
Decision #1: Configuration budget & max. captime

• **Configuration budget**
 – Dictated by your resources & needs
 • E.g., start the configurator before leaving work on Friday
 – The longer the better (but diminishing returns)
 • Rough rule of thumb: at least enough time for 1000 target runs

• **Maximal captime per target run**
 – Dictated by your needs (typical instance hardness, etc)
 – Too high: slow progress
 – Too low: possible overtuning to easy instances
 – For SAT etc, often use 300s
Decision #2: Choosing the training instances

• **Representative instances, moderately hard**
 – Too hard: won’t solve many instances, no traction
 – Too easy: will results generalize to harder instances?
 – Rule of thumb: mix of hardness ranges
 • Roughly 75% instances solvable by default in maximal captime

• **Enough instances**
 – The more training instances the better
 – Very homogeneous instance sets: 50 instances might suffice
 – Prefer ≥ 300 instances, better ≥ 1000 instances
Decision #2: Choosing the training instances

- Split instance set into training and test sets
 - Configure on the training instances \rightarrow configuration θ^*
 - Run θ^* on the test instances
 - Unbiased estimate of performance

Pitfall: configuring on your test instances
That’s from the dark ages

Fine practice: do multiple configuration runs and pick the θ^* with best training performance
Not (!!) the best on the test set
Decision #2: Choosing the training instances

• **Works much better on homogeneous benchmarks**
 – Instances that have something in common
 • E.g., come from the same problem domain
 • E.g., use the same encoding
 – One configuration likely to perform well on all instances

Pitfall: configuration on too heterogeneous sets

There often is no single great overall configuration
(but see algorithm selection etc, second half of the tutorial)
Decision #3: How many parameters to expose?

- Suggestion: all parameters you don’t know to be useless
 - More parameters → larger gains possible
 - More parameters → harder problem
 - Max. #parameters tackled so far: 768
 - With more time you can search a larger space

Pitfall: including parameters that change the problem

E.g., optimality threshold in MIP solving
E.g., how much memory to allow the target algorithm
Decision #4: How to Wrap the Target Algorithm

- Do not trust any target algorithm
 - Will it terminate in the time you specify?
 - Will it correctly report its time?
 - Will it never use more memory than specified?
 - Will it be correct with all parameter settings?

Good practice: wrap target runs with tool controlling time and memory (e.g., runsolver [Roussel et al, ’11])

Good practice: verify correctness of target runs
Detect crashes & penalize them

Pitfall: blindly minimizing target algorithm runtime
Typically, you will minimize the time to crash
Automated Algorithm Configuration: Outline

• Methods (components of algorithm configuration)
• Systems (that instantiate these components)
• Demo & Practical Issues

Case Studies
Configuration of a SAT Solver for Verification

Spear [Babic, 2007]
- 26 parameters
- 8.34×10^{17} configurations

Ran ParamILS, 2 days \times 10 machines
- On a training set from each of 2 distributions

Compared to default (1 week of manual tuning)
- On a disjoint test set from each distribution

4.5-fold speedup
500-fold speedup \Rightarrow won QF_BV category in 2007 SMT competition

[Log-log scale]

[Hutter, Babic, Hu & Hoos, FMCAD'07]
• Annual SAT competition
 – Scores SAT solvers by their performance across instances
 – Medals for best average performance with solver defaults

• CSSC 2013
 – Motivated by application context: homogeneous instances
 → can automatically optimize parameters
 – Medals for best performance after being optimization
 – Result: automated configuration affected rankings a lot
Configuration of a Commercial MIP solver

Mixed Integer Programming (MIP)

\[
\begin{align*}
\min & \quad c^T x \\
\text{s. t.} & \quad Ax \leq b \\
& \quad x_i \in \mathbb{Z} \text{ for } i \in I
\end{align*}
\]

Commercial MIP solver: IBM ILOG CPLEX

– Leading solver for the last 15 years
– Licensed by over 1,000 universities and 1,300 corporations
– 76 parameters, \(10^{47}\) configurations

Minimizing runtime to optimal solution

– Speedup factor: 2× to 50×
– Later work: speedups up to 10,000×

Minimizing optimality gap reached

– Gap reduction factor: 1.3× to 8.6×

[Hutter, Hoos & Leyton-Brown, CPAIOR’10]
Comparison to CPLEX Tuning Tool

CPLEX tuning tool
- Introduced in version 11 (late 2007, after ParamILS)
- Evaluates predefined good configurations, returns best one
- Required runtime varies (from < 1h to weeks)

ParamILS: anytime algorithm
- At each time step, keeps track of its incumbent

![Comparison Graphs](image)

2-fold speedup (our worst result)

50-fold speedup (our best result)
WEKA: most widely used off-the-shelf machine learning package (>18,000 citations on Google scholar)

Different methods work best on different data sets
- 30 base classifiers (with up to 8 parameters each)
- 14 meta-methods
- 3 ensemble methods
- 3 feature search methods & 8 feature evaluators
- Want a **true off-the-shelf solution**: Learn
Machine Learning Application: Auto-WEKA

• Combined model selection & hyperparameter optimization
 – All hyperparameters are conditional on their model being used
 – WEKA’s configuration space: 786 parameters
 – Optimize cross-validation (CV) performance

• Results
 – SMAC yielded best CV performance on 19/21 data sets
 – Best test performance for most sets; especially in 8 largest

• Auto-WEKA is online:
 http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
Applications of Algorithm Configuration

Mixed integer programming

Scheduling and Resource Allocation

Exam Timetabling since 2010

Spam filters

Helped win Competitions
- SAT: since 2009
- IPC: since 2011
- Time-tableing: 2007
- SMT: 2007

Other Academic Applications
- Protein Folding
- Game Theory: Kidney Exchange
- Computer GO
- Linear algebra subroutines
- Evolutionary Algorithms
- Machine Learning: Classification
Looking for great students & postdocs

Just started a new research group in Freiburg, Germany:
Learning, Optimization, and Automated Algorithm Design

- Algorithm configuration
- Algorithm portfolios
- Automated methods to gain insights into algorithms and instances
- Based on machine learning and optimization

Freiburg

- One of Germany’s top universities
- “Most livable place in Germany”
- Positions open anytime for outstanding MSc/PhD students, postdocs
- Please spread the word & contact me for details:
 fh@informatik.uni-freiburg.de (or just google Frank Hutter)